
970	 volume 117 | number 6 | June 2009  •  Environmental Health Perspectives

Research

Chronic beryllium disease (CBD) is an increas-
ingly recognized occupational health problem 
(Newman et al. 2001, 2005). Three categories 
of health status with respect to CBD have 
been identified: a) beryllium exposed without 
sensitization (BeE), b) beryllium-sensitized 
without disease (BeS)—presence of blood 
lymphocytes with in vitro proliferation in 
response to beryllium, and c) CBD—a chronic 
granulomatous disease that involves a berylli-
um-specific cell-mediated immune response 
and that is similar in clinical presentation to 
sarcoidosis (Rossman 1996; Williams 1996). 
CBD predominantly affects the lungs and may 
lead to severe disability or death (Rossman 
2008). Currently, a two-stage screening pro-
cess is used. The first stage of screening for this 
immunologic disorder (Rossman 1996; Saltini 
et al. 1998) is applied to exposed individu-
als and is based upon testing for lymphocyte 
proliferation to beryllium stimulation. Those 
with positive results undergo detailed clinical 
assessment with more extensive testing such as 
pulmonary function testing, high-resolution 
computed tomography scans, and fiber optic 
bronchoscopy with transbronchial biopsy 
(Maier 2002; Rossman 1996).

The large population of workers and com-
munity members (Maier et  al. 2008) with 
potential exposure makes it important to under-
stand the frequency and time course of devel-
opment of both sensitization and CBD among 
exposed individuals. The available clinical 

and epidemiologic data are not adequate to 
fully characterize the processes of sensitization 
and development of lung disease. Although 
the literature concerning treatment is limited 
(Marchand-Adam et al. 2008; Preuss 1985; 
Rossman 2008; Sood et al. 2004), it appears 
likely that there is benefit of screening and early 
treatment in many cases. Therefore, we have 
developed an analytic approach to model pro-
gression from BeE to BeS and from BeS to 
CBD with the goal of optimizing screening 
among exposed populations (Table 1).

Methods
We used the following stepwise approach: 
review of relevant published research studies 
and case series to delineate model constraints 
based upon empiric data, development of a 
series of possible analytic models to describe the 
progression from exposure through sensitization 
to CBD, evaluation of models based on com-
patibility with the constraints imposed by the 
empiric data, and use of model-generated infor-
mation to assess cost-effectiveness of screening.

A Markov analytic model was employed 
(Goldie 2003; Sonnenberg and Beck 1993) 
and a series of health states and transition 
probabilities that express the likelihood of 
moving to another state in any time period 
(e.g., from healthy to early disease) are 
defined. The model applied annual transi-
tion probabilities for progression from BeE to 
BeS and from BeS to CBD. We assumed that 

transitions are unidirectional and that CBD 
is an absorbing state (i.e., there is no transi-
tion out of the state). Calculations were per-
formed using commercially available software 
(TreeAge Pro Suite 2007, release 1.2; TreeAge 
Software Inc., Williamstown, MA; Microsoft 
Excel). Figure 1 shows the basic model, which 
was built considering a sample population 
of 1,000 BeE individuals who were BeS and 
CBD free at the starting point, and assigning 
an annual transition probability to each of 
the two possible transitions, from BeE to BeS 
(TES) and from BeS to CBD (TSD).

For each year over a 20-year span, the 
transition probabilities were applied to the 
individuals in each state at the beginning of 
the year to calculate the number progressing 
to a new state during the year. The number 
of BeE individuals was multiplied by TES to 
determine the number who advanced to BeS, 
and the number in the BeS state was multi-
plied by TSD to determine how many devel-
oped CBD. We generated graphical displays 
to show changes in the distribution among 
the three states over time.

Various combinations of TES and TSD 
parameters were evaluated to compare distri-
butions and evaluate consistency with available 
empirical data. We then enhanced the basic 
model first by using time-dependent transition 
probabilities to evaluate the effect of latency 
on disease progression. Two latency-effect 
parameters were permitted for each annual 
proportionate increase or decrease in the tran-
sition probability and the year at which the 
change began (e.g., a 1% annual decline in 
TES starting with the fifth year of latency). We 
then used mixed population models to evalu-
ate the assumption that two distinct popu-
lations that differ in risk (i.e., different TES 
and TSD parameters) are present among BeE 
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individuals. This is a reasonable assumption 
given the observed difference in risk between 
individuals with or without a glutamic acid 
residue in the 69th position of the β-chain of 
the human leukocyte antigen (HLA) DP allele 
(Glu69). The overall observable distributions 
are determined by combining results, weighted 
by the relative proportions. We included both 
time-dependent transition probabilities and 
the mixed population assumption in a more 
complex model.

Cost-effectiveness was evaluated by con-
sidering the yield of new cases detected in rela-
tionship to the cost of screening. Screening for 
beryllium-related health effects includes two 
components: annual blood lymphocyte prolif-
eration testing for persons with BeE to detect 
BeS, and in-depth evaluation every 3 years 
(triennially) with pulmonary function testing, 
chest imaging, and possible bronchoscopy to 
detect CBD among persons with BeS. For 
each year, we calculated the number of new 
BeS and CBD cases as the difference between 
those present before the year and at the end 
of the year. Cost was estimated by applying a 
standardized cost to each blood test performed 
and in-depth evaluation performed (€100 and 
€5,000, respectively). Cost estimates were con-
verted to Euros to prevent misunderstanding 
that they were directly observed from empiri-
cal U.S. data. Both annual and cumulative 
program costs to date were calculated.

Several metrics expressed relationships 
between yield and cost: incremental cost per 
new case detected is equal to the total pro-
gram cost for a year divided by the number 
of CBD cases detected in that year; cumula-
tive average cost per case to date is equal to 
the total cumulative program costs to date 
divided by total number of cases to date; and 
case yield is equal to the proportion of assess-
ments that are positive, calculated for the first 
and second stages of screening as BeS/BeE or 
CBD/BeS, respectively.

Results
Selection of parameters from empirical data. 
From several cross-sectional surveys, we deter-
mined a reasonable range of prevalence for 
BeS and CBD (Table 1) (Cummings et al. 
2007; Donovan et  al. 2007; Henneberger 

et al. 2001; Kreiss et al. 1989, 1996, 1997; 
Newman et al. 2001; Rosenman et al. 2005; 
Sackett et al. 2004; Stange et al. 2001; Welch 
et al. 2004). The range of BeS extends from 
< 1% (Sackett et al. 2004) to 12% (Kreiss et al. 
1989). CBD prevalence ranges from 0.1% 
to 9.1% (Henneberger et  al. 2001; Welch 
et al. 2004). Studies show a greater BeS preva-
lence with longer latencies (Cummings et al. 
2007; Stange et al. 1996; Viet et al. 2000) 
and a consistent increase of prevalence with 
increasing latency (i.e., a monotonic effect) 
(Henneberger et al. 2001). However, both 
BeS and CBD also develop with short latency 
(e.g., 4 of 15 cases with less than 3 months of 
exposure; Newman et al. 2001). A few studies 
(Newman et al. 2001; Stange et al. 1996) have 
reported periodic rescreening, allowing deter-
mination of apparent incidence. Such studies 
are usually relatively small and over a short 
time course of 2–3 years. Therefore, we did 
not directly apply the reported incidence rates 
for comparing models.

Based on the data from the reviewed stud-
ies, several constraints for assessing models were 

adopted: Both CBD and BeS can develop with 
short latencies; new cases of both BeS and CBD 
continue to develop after many years of latency, 
and even with very long latencies; and most 
exposed workers develop neither BeS nor CBD.

Models. We employed several models, 
ranging from simple to more complex mod-
els; Table 2 summarizes several examples. In 
addition to the specific parameter estimates 
shown, other combinations of parameter esti-
mates were evaluated.

Simple model (fixed transition prob-
abilities). As shown in Figure 2, A and B, 
applying unchanging transition probabili-
ties leads to relatively few cases in the early 
years. Additionally, the proportion with CBD 
among those with positive blood lympho-
cyte proliferation tests for BeS is quite low in 
the early years of screening. Use of transition 
probabilities that yield adequate prevalence 
of BeS and CBD with short latencies leads to 
excessive prevalence of both BeS and CBD in 
latter years. Therefore, it is quite unlikely that 
the simple model, with constant annual tran-
sition probabilities, is accurate.

Figure 1. Three-state progression model and 
annual transition probabilities TES and TSD.

Sensitized (BeS)

Exposed (BeE)

Disease (CBD)

TSD

TES

Table 1. Examples of studies reporting prevalence.

		       BeS + CBD		  CBD
Reference	 No.	       prevalence (%)	 Latency	 prevalence (%)	 Latency

Donovan et al. 2007	 277	 10.50	 S	
	 539	 9.10	 L	
Henneberger et al. 2001	 151	 9.50	 S	 1.40	 S
		  10.40	 L	 9.10	 L
Kreiss et al. 1989	 51	 11.70	 L	 7.80
Kreiss et al. 1996	 136	 3.70	 S	 3.70	 S
Kreiss et al. 1997	 627	 6.90	 L	 4.60	 L
Newman et al. 2001	 235	 6.40	 L	 3.80
Rosenman et al. 2005	 577	 7.00	 L	 7.60	 L
Sackett et al. 2004	 2,221	 0.80	 L	 0.14
Schuler et al. 2005	 153	 6.50	 L	 3.92	 L
Stange et al. 1996	 4,268	 1.70	 L	 0.60	 L
Welch et al. 2004	 3,842	 1.40	 L	 0.10	 L

Abbreviations: L, long (e.g., 10–20 years); S, short (e.g., < 5 years). “BeS + CBD” includes all subjects with positive blood 
beryllium lymphocyte proliferation tests. 

Table 2. Models employed.

	 Transition probabilitya

Model	 Population type	 TES	 TSD

A	 Single	 Constant	 Constant
		  5%	 2%
B	 Single	 Time dependent	 Constant
		  10%, then decreasing by 20%	 5%
		    each year starting at year 4
C	 Single	 Time dependent	 Time dependent
		  10%, then decreasing by 20%	 50%, then decreasing by 35%
		    each year starting at year 4	   each year starting at year 3
D	 Mixedb	 Constant	 Constant
	 Glu69 positive	 5%	 2%
	 Glu69 negative	 2%	 1%
E	 Mixed	 Time dependent	 Time dependent
	 Glu69 positive	 2.5%, then decreasing by 20%	 20%, then decreasing by 20%
		    each year starting at year 4	   each year starting at year 3
	 Glu69 negative	 0.25%, then decreasing by 10%	 2%, then decreasing by 10%
		    each year starting at year 4	   each year starting at year 3
aTransition probabilities for annual risk of progressing from BeE to BeS (TES) and from BeS to CBD (TSD) for each model. 
bGlu69 positive and negative refer to variants in the β-chain of the HLA-DP allele.
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Incorporation of time-dependent latency 
factors. Incorporation of a negative latency 
factor (decline in risk of progression over time 
since first exposure) helps meet the constraint 
of relatively high prevalence in the early years 
without proportional increases in later years. 
Furthermore, if the decline in risk of pro-
gression over time is greater for BeS than 
for CBD development, the CBD:BeS ratio 
does not increase too markedly over time. 
However, the predicted prevalence does not 
approximate those reported in empiric stud-
ies. Parameters that yield sufficiently high 
incidence rates lead to inappropriately high 
prevalence after the first few years. Therefore, 
it appears unlikely that this model adequately 
represents the course of progression.

More complex models. The model that 
provided the best fit with the empirically 
derived constraints incorporated both time-
dependent transition probabilities and a 
mixed population assumption (Figure 2C).

Screening cost-effectiveness. For cost-
effectiveness analyses, we used the model 
incorporating time-dependent transition prob-
abilities and a mixed population assumption. 
Figure 3 shows the annual incidence of BeS and 
CBD and illustrates the percentage of positive 
tests for BeS and CBD. Table 3 and Figure 4 
show results for periodic screening with annual 
blood testing of BeE individuals and triennial 
in-depth evaluations for CBD of BeS individu-
als. The figures show that the annual number 
of new cases increases for the first few years and 
then declines. In addition, the cost-effectiveness 
of repetitive screening declines over time. When 
the screening program is applied to a popula-
tion over many years, both the incremental cost 
of finding a new case and the average cumula-
tive cost per case increase with latency.

Table 3 shows the impact of screening 
applied to previously untested populations. 
Results are shown for incremental and cumu-
lative costs for new cases of CBD and BeS with 
periodic screening. In addition, the right most 
column of the table shows the cost per case of 
CBD if screening is applied only one time; the 
table shows the cost per case according to the 
latency time at which the one-time screening is 
performed. Cost-effectiveness is greater in this 
situation because it detects prevalent rather 

than incident cases. Furthermore, the cost per 
case is relatively low even when screening is 
implemented for workers with long latencies 
since onset of exposure.

Discussion
To optimize screening and early intervention 
programs to prevent progression to severe 
disease, several questions must be answered: 
a) How rapidly do individuals with expo-
sure develop BeS? b) How likely are BeS 
individuals to develop CBD? c) What is the 
time course of these changes? d) Does the 
risk change over time since initial exposure? 
e) How cost-effective are screening methods 
for BeS and CBD?

Empirical studies of occupational cohorts 
(Cummings et al. 2007; Henneberger et al. 
2001; Newman et  al. 2001; Stange et  al. 
1996; Viet et al. 2000; Yoshida et al. 1997) 
and reports of clinical series are inadequate 
for fully describing the course of progression 
(Harris et al. 1997; Kreiss et al. 1993; Maier 
et al. 2002; O’Brien et al. 1987; Preuss 1985; 
Rees 1979). However, the available data permit 
constraints on possible ranges of the parameters 
of disease progression to be defined. Although 
differing opinions about the value of screen-
ing for BeS and disease have been presented 
(Borak et al. 2006; Cullen 2005; Rossman 
2008), there is evidence that both BeS and 
CBD can be detected in early stages and that 
treatment with corticosteroids or other medica-
tions can be beneficial (Rossman 2008; Sood 
et al. 2004). The present analysis may help 
inform the debates about the utility of screen-
ing; for example, it adds information about 

the likelihood and time course of progression 
from BeS to CBD. Differences in the reported 
prevalence of BeS and CBD among studies are 
possibly due to exposure level differences, mis-
classification of exposure status, or dissimilar 
follow-up. Because residents of communities 
near beryllium production facilities are also at 
risk of developing CBD and BeS (Maier et al. 
2008), similar analyses may be appropriate for 
informing screening programs for large com-
munity populations with relatively low expo-
sure (Redlich and Welch 2008).

We applied a Markov simulation model to 
assess possible assumptions about the risk of 
progression. Available empirical information 
includes cross-sectional prevalence of BeS and 
CBD soon and many years after initial expo-
sure, and the relationship between numbers of 
individuals with BeS and CBD. We based our 
basic model upon the three widely accepted 
states of beryllium-related health status (BeE, 
BeS, CBD). Although there is residual uncer-
tainty in the precise values of the two annual 
transition probabilities (BeE to BeS and BeS to 
CBD, respectively), the patterns of the distri-
butions under different assumptions are suffi-
ciently different to allow meaningful contrasts. 
Thus, the time-varying transition-probability 
mixed-population model was most appropri-
ate across the range of prevalence studies in 
the published literature.

It is unlikely that the annual risk of devel-
opment of BeS and/or CBD remains con-
stant. A simple model with constant annual 
rates of progression cannot yield prevalence 
estimates consistent with relatively high 
prevalence within the first 5 years of exposure 

Figure 2. Progression over time: proportion of persons in BeS and CBD states for each year. (A) Single population, constant transition probabilities (model A). (B) 
Mixed population, constant transition probabilities (model D). (C) Mixed population, time-dependent probabilities (model E). For model definitions, see Table 2. 
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(Henneberger et  al. 2001; Newman et  al. 
2001) and continued development of new 
cases of BeS and CBD many years after initial 
exposure (Cummings et al. 2007; Henderson 
1970; Henneberger et  al. 2001; Newman 
et al. 2001; Stange et al. 1996). Rather, this 
risk is likely to decline with increasing latency.

Inclusion of two populations differing in 
risk of progression and their respective declines 
in risk over time improves the fit with the 
empirical data. Such assumptions are biologi-
cally and epidemiologically reasonable. CBD is 
one of the best examples of gene–environment 
interaction. Several genes, particularly the 
Glu69 variant in the β-chain of the HLA-DP 
allele, are strongly associated with individual 
risk, making it biologically likely that there 
are at least two groups in the exposed popula-
tion groups that have different susceptibility 
toward progression. Furthermore, job title is 
closely associated with risk, so machinists have 
considerably greater risk than do lesser exposed 
workers (Newman et  al. 2005). Temporal 
decline in annual risk would occur as the 
higher risk persons develop BeS and CBD, 
thereby reducing the average risk of those who 
remain at risk of progression.

Optimizing screening programs. The 
declining annual risks of developing new 
BeS or CBD suggest that screening intensity 
may be reduced as time since initial exposure 
increases. This would allow effective focusing 
of available resources. For example, the fre-
quency of repeated blood lymphocyte prolif-
eration testing of persons with prior exposures 
should be greater in the early years rather than 
in later years. Calculations may understate the 
impact because our models did not incorpo-
rate measures of health benefit or health risks. 

Because persons with long latencies tend to 
be older, years of life or quality adjusted years 
of life saved would be lower in long-latency 
cases. Similarly, the health risks of diagnostic 
procedures (e.g., bronchoscopy) and of treat-
ment (e.g., high-dose prednisone) are likely to 
be greater in long-latency cases.

Most of the empirical studies gener-
ally do not clearly distinguish years since 
first exposure from years since last exposure. 
Therefore, these results should not be inter-
preted to suggest reduced screening intensity 
of currently exposed workers who have long 
latency. However, a high proportion of indi-
viduals being screened ceased being exposed 
many years ago; for example, many had been 
employed in the former nuclear weapons 
industry.

Nor do these results apply to persons who 
present with relevant clinical evidence sug-
gestive of CBD such as radiographic signs 
(e.g., interstitial or ground glass opacities), 
pulmonary function abnormalities (e.g., 
reduced diffusing capacity), or incidental 
findings on biopsy (e.g., granuloma or lym-
phocytic infiltrate). Indeed, the reduction 
over time of screening cost-effectiveness when 
applied nonselectively argues for focusing 
resources upon those with higher likelihood 
of remediable disease.

The results of our more complex models 
also support the benefit of screening individu-
als or populations that have not been previ-
ously tested. Table 3 shows that even with 
long latency, both cost-effectiveness and diag-
nostic yield are significant when applied to 
exposed populations not previously tested. 
Under such circumstances, the screening seeks 
to identify prevalent rather than incident 

cases. Therefore, there will be a pool of cases 
that have accumulated over many years.

Limitations. Our models do not provide 
precise estimates of incidence rates and preva-
lence over time. Nevertheless, they demon-
strate that risk of progression declines with 
time and provide useful insights into optimi-
zation of screening programs.

There are significant data gaps in the avail-
able population and clinical studies. These 
studies report divergent prevalence values for 
several possible reasons. Case definitions for 
both BeS and CBD differ among studies. 
The populations are heterogeneous in terms 
of length and magnitude of exposure. This 
affects the prevalence because the risk of BeS 
and CBD is dose related (Henneberger et al. 
2001; Viet et al. 2000; Yoshida et al. 1997). 
Prevalence is also affected by inclusion of 
retirees (Cummings et al. 2007; Stange et al. 
1996). The study populations are heteroge-
neous. Cross-sectional studies include indi-
viduals with both short and long latencies. The 
cross-sectional studies are subject to survivor 
and ascertainment bias; those who had severe 
CBD and those who have left the worksite 
would not appear in several of the studies. 
Adequate, long-term cohort studies are absent.

We simplified the calculations by using a 
1-year “time slice” for applying transition prob-
abilities. A person developing BeS at the begin-
ning of a year would not be considered part of 
the pool at risk of progressing to CBD until the 
end of the year. Similar considerations apply to 
calculating diagnostic yield for triennial in-
depth evaluation based upon the average size of 
the BeS population over that time. Such errors 
are likely to be relatively small.

The cost data are somewhat arbitrary, and 
the cumulative cost models do not incorpo-
rate either cost inflation or discounting of 
later versus early expenditures. However, the 
modeling effectively demonstrates the rela-
tive changes in cost-effectiveness. Similar 
approaches have been applied to occupational 
asthma (Wild et al. 2005) and for selecting 
workers for spirometry screening (Schwartz 
et al. 1988). The analysis includes only the 
direct cost of the testing (e.g., cost per subject 
tested) and did not include fixed program 

Figure 4. Estimated cost-effectiveness of screening 
using the assumptions for model E (time-dependent 
progression probabilities in a mixed population; 
Table 2). 
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Table 3. Cost-effectiveness for periodic screening: annual blood testing for BeE individuals and triennial 
in-depth evaluations for CBD for BeS individuals.

		  Incremental cost (€)/
Year	 New cases	 new case	 Cumulative cost (€)/	 Cost (€)/CBD
(latency)	 BeS	 CBD	 BeS	 CBD	 CBD case	 one-time screen

1	 9.4	 0.0	 10,538	 0	
2	 9.0	 1.3	 10,970	 57,482	 184,387	 135,152
3	 8.0	 2.3	 12,226	 44,301	 161,214	 56,300
4	 6.1	 2.5	 15,794	 48,905	 205,505	 36,492
5	 4.9	 2.3	 19,861	 58,655	 282,278	 28,136
6	 3.9	 2.0	 24,538	 72,212	 393,245	 23,710
7	 3.2	 1.7	 29,938	 89,716	 546,571	 21,054
8	 2.6	 1.4	 36,183	 111,747	 754,022	 19,331
9	 2.2	 1.2	 43,403	 139,129	 1,030,902	 18,155
10	 1.8	 1.0	 51,736	 172,898	 1,396,560	 17,323
11	 1.5	 0.8	 61,331	 214,296	 1,875,121	 16,720
12	 1.3	 0.7	 72,350	 264,790	 2,496,376	 16,273
13	 1.1	 0.6	 84,966	 326,092	 3,296,782	 15,939
14	 1.0	 0.5	 99,370	 400,176	 4,320,608	 15,686
15	 0.8	 0.4	 115,765	 489,307	 5,621,186	 15,493
16	 0.7	 0.3	 134,374	 596,054	 7,262,187	 15,345
17	 0.6	 0.3	 155,441	 723,319	 9,319,138	 15,232
18	 0.5	 0.2	 179,230	 874,355	 11,880,908	 15,144
19	 0.5	 0.2	 206,033	 1,052,775	 15,051,192	 15,077
20	 0.3	 0.2	 353,315	 1,262,579	 18,950,309	 15,025

Data include the number of new cases each year for a population of 1,000 BeS persons initially free of abnormality. 
Cumulative cost/case is the cost to date/total cases to date. Calculations are based on model E (Table 2).
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costs (e.g., program administration) or indi-
rect costs (e.g., lost work time during testing). 
Furthermore, the approach treated screen-
ing with blood beryllium lymphocyte pro-
liferation tests as a single entity; alternative 
algorithms of test and rapid retest have been 
suggested (Middleton et al. 2006).

In summary, combining published obser-
vational data and several possible progression 
models suggests that the risk of developing 
BeS is greatest in the first few years after expo-
sure and then declines, and that the annual 
risk of progressing from BeS to CBD declines 
over time. However, there is a persistent 
risk of developing new BeS and new CBD 
even with long latency, so screening inten-
sity should be adjusted according to years of 
latency in order to optimally use resources. 
Screening is also useful for exposed workers 
who have not been previously tested.

Correction

In the original manuscript published online, 
the standardized costs applied to each blood 
test and in-depth evaluation were incorrect. 
They have been corrected here.
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